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Linearized acoustic theory is applied to the calculation of the thickness noise 
produced by a supersonic propeller with sharp leading and trailing edges. The 
theoretical development is summarized and numerical calculations of the pres- 
sure-time waveform are presented. The erratic behaviour of previous time-domain 
calculations has been completely eliminated by careful numerical treatment of 
singular points, multiple singular points and nearly singular points that appear in the 
analysis. This allows a close inspection of the details of the calculated waveform and 
leads to the discovery of abrupt changes of slope in the pressure-time waveform, 
produced by singular points entering or leaving the blade a t  the tip. The behaviour 
of the pressure-time waveform is shown to be closely related to changes in the 
retarded rotor shape. Logarithmic singularities in the waveform are shown to be 
produced by regions on the blade edges that move towards the observer at sonic 
speed while a t  the same time having the edge normal to the line joining the source 
point and the observer. The logarithmic singularities are closely related to the shock 
waves produced by a swept airfoil in supersonic rectilinear motion, and they can be 
eliminated throughout the entire flow field by sweeping the rotor so that the Mach- 
number component normal to the leading and trailing edges is subsonic for all points 
on the rotor edges. 

1. Introduction 
The production of sound by a propeller due to the blade thickness is problem of 

current interest. A propeller achieves improved efficiency relative to typical turbofan 
aeroengines since a significantly greater rotor diameter is practical, but the 
production of noise is a significant drawback. This problem has received much 
attention in the literature, including the papers of Hawkings & Lowson (1974), 
Lowson & Jupe (1974), Farassat & Succi (1980), Farassat (1983,1984,1986), Hanson 
(1976, 1980), Schmitz & Yu (1986) and others. Much of the notation here follows that 
of Hanson (1976). These previous papers did not examine the detailed shape of the 
pressure-time waveform and its relation to the retarded blade shape. The accurate 
calculation of the pressure field has presented difficulties. Singular points and points 
that are nearly singular, if improperly treated, lead to erratic results in the 
calculations. Although the previous calculations may be satisfactory for acoustic 
predictions, the accuracy of the present prediction gives a better understanding of 
the sound production process. 

The mathematical formulation of the problem is quite straightforward, although 
this may be obscured somewhat in the literature by several reformulations that 
attempt to avoid computational difficulties. The present analysis begins with the 
simplest formulation, accepting the computational difficulties, and uses appropriate 
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numerical techniques to properly treat the difficult areas. Thus, rather than 
reformulate the problem to avoid integrable singular points, the singular integrals 
are evaluated in a straightforward manner using techniques appropriate to the type 
of singularity. 

The present calculation considers only the case of blade thickness. The loading or 
dipole case is not considered, but is quite easily included by replacing the expression 
for a monopole by that for a dipole in the analysis, assuming the dipole strengths are 
given. Because the retarded blade shape, which is critical in determining the radiated 
pressure field, does not depend on the source type, the dipole sound due to steady 
loading is not expected to introduce new effects. Axial mean flow is assumed and the 
blade thickness is simulated by monopoles placed on the helix, rather than on the 
actual blade surface, following standard linearized theory. Sharp leading and trailing 
edges are assumed. It should be possible to treat the blunt-edge case following a 
similar analysis; this case is expected to show the same close relation to the 
rectilinear motion case as does the sharp-edge case. The major factors have been 
retained, resulting in an improved understanding of the sound generation and several 
characteristics unique to this problem. 

Some researchers may prefer a frequency-domain analysis, rather than the time- 
domain analysis presented here. Thus, Hanson’s more recent treatment (1979) is in 
the frequency domain rather than the time domain used previously (1976). There are 
arguments for each approach. The frequency-domain approach avoids some of the 
numerical complexity of the time domain. However, if the results of the frequency 
domain are inverted back to the time domain, the singular peaks and abrupt slope 
changes in the pressure-time waveform require many frequency terms to get 
comparable resolution. An understanding of the origin of these singularities provides 
a promising avenue for noise attenuation. Although Tam (1983) analyses the case of 
an airfoil with a blunt leading edge in the frequency domain and is able to derive the 
singular behaviour for this case, the present author feels that a time-domain analysis 
gives a more physical understanding of these singularities and their point of origin 
on the blade. It will be seen that for any given observer position the singularities 
originate from a small region of the blade edge. Because a Fourier decomposition of 
the blade source term is made in the frequency-domain analysis, it becomes difficult 
to determine detailed source locations. Moreover, it seems more natural to regard the 
problem in the time domain since the waveforms from successive rotor passes are 
essentially independent non-overlapping pulses. Analysing the problem as a series of 
harmonics based on blade passage frequency may be relevant to the listener, but the 
introduction of the additional variable, blade passage frequency, has no direct 
relation to the properties of an individual pulse. 

The formal solution to the problem is presented in $2. The behaviour of the 
resulting integral (which must be evaluated numerically) near certain singular points 
that arise is analysed in $3. The relation to a previous result of Taylor, Lamb and 
Hilton is given in $4. A brief description of the calculation procedure is given in 
95 and the calculated results are analysed in $6. The case of zero sweep is first 
presented followed by cases with sweep, first a small amount then a more significant 
amount. Sweep is useful for eliminating logarithmic singularities in the pressure-time 
waveform caused by rotor edges having a supersonic relative velocity normal to the 
edge. Another type of behaviour characteristic of this problem is the occurrence of 
sudden changes of slope in the pressure-time waveform; the origin of these is 
explained in the analysis. 

The present paper deals only with theory and does not make comparison with 
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experimental measurements. The object is to present a rigorous analytical and 
numerical result, showing the detailed behaviour of the exact linearized solution. 
This is shown to agree with a previous calculation of Hanson that gave the general 
form of the solution, but not the fine detail. For comparison of the linearized solution 
with experiment, the author is referred to the papers of Hanson (1979) or Schmitz & 
Yu (1986). These references show limitations of the linearized solution, especially 
where transonic effects become important. By clarifying and more rigorously 
investigating the linearized solution, it is hoped that the present paper will help form 
the basis for future investigations into these nonlinear effects. 

2. Analytical formulation and solution 
The simplest case of a propeller moving along a helical path without crossflow is 

analysed. The helix is formed by straight line generators; i.e. the intersection of the 
helix with the plane x = constant is a straight line. The rotor blade is assumed to lie 
close to this helix ; the sources used to represent the blade can then be assumed to  lie 
in the helix, a standard linearized-flow assumption. The rotor hub moves along the 
x-axis as shown in figure 1.  The leading edge of the rotor can be any curve, although 
initially it will be assumed to be a straight line coinciding with the y-axis a t  time 
t = 0. The chord c of the rotor can be a function of radius but is here assumed 
constant, and the blade thickness is denoted by h( * ) with h(0) denoting the leading 
edge and h(c) the trailing edge. The thickness also can be a function of radius, but is 
set to zero a t  the leading and trailing edges; i.e. the edges are sharp. For any given 
radius ro  the parameter y is used to measure the distance along the helix. The y-  
coordinate is fixed with the helix. It is set to zero on the y axis, and is positive in the 
downstream direction of the helix. Thus, y = 0 coincides with the airfoil leading edge 
only at t = 0, as shown in figure 2.  The observer is assumed to be fixed to the ambient 
fluid, the propeller moving past him. The helical surface along which the blade moves 
is then fixed with respect to the observer. The observer is taken to lie in the z = 0 
plane; this loses no generality since the observer’s x-position and time can be 
appropriately adjusted to give a situation equivalent to an arbitrary z-position. 

The far-field pressure is written using the linearized form of the result of Curle 

where S represents the surface that generates the sound, pi, is the surface stress, v, 
is the normal surface velocity, co is the sound speed, ni is the surface normal, po is 
the free-stream density and r is the distance from source to observer. The airfoil is 
assumed to have no loading so that the force term is zero, leaving only the first term 
in (1).  The second term could be included, if p ,  were known, but the integration 
would be over the same retarded surfaces as for the first term, giving much the same 
basic behaviour. Since the source term in the above equation has an arbitrary time 
dependence, a moving body can be represented by stationary sources turning on and 
off to represent the flow field generated by a body moving past. 

Relative to the blade, the fluid velocity normal to the surface is equal to the local 
fluid velocity relative to the body surface times the body slope along the direction of 
the velocity. Because the perturbations are assumed small, the fluid velocity along 
the helical surface relative to the rotor is set equal to the negative of local rotor 
velocity; that is, relative to the helix the local fluid does not move in the airfoil plane 
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FIGURE 1. Helical path of path of propeller in the fluid-fixed coordinate system showing the 
origin of the y-variable relative to the blade leading-edge position at  time t = 0. 

y = y” - ut h(y - yo + Ut)  y = o  . . -  

-+L U Y 

FIGURE 2. Thickness distribution of the blade (shown to scale) used for all calculations in this 
paper. Position of the blade leading edge relative to the y-axis is shown. 

to lowest order. Using the coordinate y the airfoil thickness for a given radial station is 
h(y - yo + Ut,  yo). Equation (1)  for the pressure can then be written 

where 
U 

CO 
f =  y-yo(ro)+Ut-M,R, M ,  = -, (3) 

ro is the radial position on the rotor, s is the rotor span, U is the velocity of the blade 
segment relative to the fluid and yo(ro) is the y-distance of the airfoil leading edge 
from the y-axis at t = 0 ;  for a straight blade yo = 0. In  effect, yo is a phasing term 
to account for sweep; the sound for any given dr, blade segment can be calculated 
by assuming y = 0 a t  t = 0 and then time shifting to the actual y-value using yo. The 
distance R of the observer to a point ro, y on the helix is 

+y2+r~-2yrocos (4) 

The velocity V represents the forward flight speed along the x-axis. For a rotor with 
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a radian velocity SZ, the azimuthal velocity a t  a radius ro is Qr, and U 2  = V 2  +Q2ri.  
The y-integration in (3) is taken over the entire y-range, - co < y < m. For any 
given time the y-values satisfying f = 0 and f = c represent retarded positions of the 
airfoil leading edge and trailing edge respectively. (The curves of r ,  = constant 
and y = constant are not orthogonal since y = constant does not represent a line 
of constant azimuthal angle 0. Nevertheless, the figure enclosed by the lines 
ro, r,+dr,, y ,  and y+dy  is a parallelogram, the height given by dr, and the base by 
dy;  the differential area is dr,dy, as required in (2).) The first form of (2) for the 
pressure was used by Hanson (1976), and much of the notation here follows that 
paper, but the present calculation is based on the second form. 

The second relation in ( 2 )  results from taking the time derivative under the 
integrals where it operates on Ut in the argument f .  Although both forms should give 
identical answers, the second form is used since the integrals are rather sensitive to 
errors, and it should be preferable to use a form that does not need to have the time 
derivative taken after numerical evaluation of the integral. However, the integrand 
of the second form becomes infinite a t  the airfoil leading and trailing edges since h 
is infinite here; h is finite since the airfoil is assumed to have sharp leading and 
trailing edges. This would make the second form of (2) more difficult to evaluate, 
except for the fact that the difficult points are much more evident and can be 
properly accounted for, whereas in the first form the integral may appear easier, but 
difficulties arise on taking the derivative. 

The infinity of h at  the leading and trailing edges is eliminated by performing the 
y-integral after introducing the delta function form 

h”(y,r,) = h’(O,r,)6(y)+h’;(y,r,)-h’(c, ro)&(y-c). (5) 

The derivatives of the thickness, h’(0, T o )  and h’(c, r,), represent the total angle 
between tangents to the upper and lower surfaces at the airfoil edges. h at the 
leading edge is positive and h‘ at  the trailing edge is negative. hr is assumed to  be zero 
ahead of the leading edge and behind the trailing edge, and there is a t  most a finite 
discontinuity in h;’ at  the edges. Equation (5 )  gives the correct result for h’ and h if 
integrals of h” over y are performed. 

With the substitution of (5), equation (2) becomes 

The integrand of the double integral is always finite. The integrands of the single 
integrals become infinite when the denominators become zero ; i.e. when 

i3R - _  af - l - M r - = O  
aY a Y  

(7) 

with the constraint f =  <C>> (8) 

where the notation <c) is defined to be 0 for the leading edge and c for the trailing 
edge. The solution of (8) is the y-value for the given t and ro that lies on the leading 
or trailing edges. The locus of all such points for ro-values between the hub and the 
tip (0 < ro < s) is the retarded blade shape, shown in figures 6, 11 and 13. Points on 
the blade edge satisfying (7) are moving towards the fluid-fixed observer a t  a relative 
Mach number of one. These might be expected to be very significant points, but in 
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the analysis to follow it is shown that this depends greatly on the blade sweep a t  the 
points. 

3. Behaviour of the integrand near a singular point 
3.1. Case of an integrable singular point 

The last two terms in the integrand of (2) become infinite a t  singular points given by 
(7). This could create convergence problems for the r,-integration if the behaviour 
near a singular point were of a power equal to or stronger than ro l .  It is shown below 
that the behaviour near a singular point is r;; with one exception as noted. 

Consider the second term in the integrand of (7).  (The third term is treated in the 
same manner.) Since this term is subject to the condition f = 0, it follows that 
between any two points on the leading edge 

Af = 0 = A(y-yo) - M ,  AII + (c, t - R) AM,. (9) 

In  this equation the variation AR for variations Ay and Ar, is written using a 
Taylor’s series as 

aR 1 a2R aR 
AR = - Ay + - ~ ( A y ) ,  +-A?-, + . . . . 

ay 2 a y 2  a r 0  

The derivatives in (10) are to be evaluated at the singular point given by (7). 
Substitution of (10) into (9) and using (3) with f = 0 gives for the behaviour on the 
leading-edge edge near the singularity 

where M ,  = Br,/c,. Also, AM, was evaluated in terms of Ar, and Ay using M,Z = 
V z / c i + M i ;  locally the sweep parameter yo is assumed to vary linearly with r,; i.e. 
Ayo/Ar,  = x. Equation (1  1) shows that, for points on the edge, Ay and Ar, are related 

near the singular point. The behaviour of the second or third terms of (6) near the 
singular point is now found by expanding the denominator in a Taylor’s series and 
using (12). Since Rldf/ayI = 0 at the singular point, this gives for the denominator 

”(. aY I $ I)Al’+$(. 1 $ I )Ar ,+.  . . = C , ( A r , ) ~ + C , A r , + .  . . , 

where C ,  and C ,  are non-zero constants. Near the singular point this expansion of the 
denominator shows the dominant behaviour of the second or third term in the 
integrand of (6) to be (Aro)-i. This was previously found by Amiet (1977) from 
numerical calculations near the singular points. Thus, (6) is integrable over r, a t  the 
singular points, except as noted below. Nevertheless, the position of the singular 
points must be determined when numerically evaluating the integral, since special 
precautions are required for integration near singularities. Farassat (1983) has also 
investigated the behaviour of the integrand near the singular points. The notation is 
different enough that no direct comparison with the present result is readily possible, 
but the statement is made that the line integrals are integrable, which agrees with 
the above result, but overlooks the special case noted below. 
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3.2. Case of a non-integrable singular point 
This inverse square-root behaviour near a singular point no longer holds if the 
coefficient of Aro in (1 1) becomes zero. The condition for this is 

When this holds, Ay - Ar, and the denominator in (13) varies linearly with r,, to 
lowest order. This produces an r;’ behaviour of the integrand, leading to a 
logarithmic singular behaviour near certain points in the pressure-time waveform 
which is evident in the figures to be shown. This behaviour was previously mentioned 
by Hawkings & Lowson (1974) who deduced the behaviour from the fact that  when 
the calculations are made in the frequency domain, the asymptotic behaviour of the 
nth harmonic a t  these points is n-l. The logarithmic behaviour is also stated without 
proof by Farassat (1986). 

An analytical expression for the far-field pressure near the logarithmic singularity 
could be derived from appropriate expansions a t  a time very near the logarithmic 
singularity, following the above line of analysis. The result appears to be somewhat 
involved, and would probably be of little use; the singularity is only logarithmic and 
one must be quite near the singularity in order for this logarithmic behaviour to 
dominate the first term in the integrand, which cannot generally be evaluated in 
closed form. The analysis was carried out far enough to demonstrate the logarithmic 
behaviour In ( t - to) ,  where to is the time of occurrence of the logarithmic singularity. 
Note that [In (t-to)]’ is integrable in time, assuring a finite value for the acoustic 
energy a t  the logarithmic singularities. 

It should be emphasized that the term ‘singularity ’ is being used in two different 
ways. The first usage denotes a singularity in the integrand of (6). If this is integrable 
over ro, the second type of singularity will not appear. Equation (13) gives the 
behaviour of the integrand as, generally, r;;; however, at certain values of ro and t 
the behaviour of the integrand becomes r;l, leading to a logarithmic singularity in 
the pressure-time waveform. To distinguish between these two uses of singularity, 
the second type will always be denoted by the term ‘logarithmic singularity’. 

Equation (14) can give physical insight into the sound generation process. 
However, the variable y has no simple relation to the geometry of the rotor; the 
equation becomes much clearer if reformulated in terms of the independent variables 
ro,r rather than the variables ro, y ,  where 

y--yo = -u7; (15) 

y = yo at t = 0 for points on the leading edge, by definition of yo. At later times, for 
points on the leading edge the value of y-  yo depends on ro whereas r is a function 
only of time. Thus, a partial derivative with r = constant is a derivative taken along 
the edge. Transforming from ro, y to ro, 7 gives 

Figure 3 illustrates the blade orientation relative to the observer a t  the time of a 
logarithmic singularity. It is shown as a plane figure ( M ,  = x = 0) for simplicity 
only ; the analysis does not require this. Line AB denotes the tangent to the blade 
leading edge a t  point D. OA is the blade reference line that coincides with the y-axis 

18-2 
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B 

FIGURE 3. Position of the blade at the retarded time that produces a logarithmic singular point 
in the pressure-time waveform. 

a t  t = 0. Lines OA and AB need not be coincident with the rotor leading edge, except 
a t  point D, but for clarity it may be easier to think of the rotor leading edge as being 
composed of these two segments. The lines AB and QD are drawn normal to one 
another ; this will be shown to be necessary if point D is a solution to (14). Taking the 
derivative of (15) with y kept fixed and noting that U 2  = V2+Q2r;  gives 

where x = aYo/ar,. The derivative aR/ar in (16) is found from (7); with the 
transformation in (15) this becomes 

El - - - c o .  
ro 

Introducing (17) and (18) into (16) and using the result to replace the derivative in 
(14) cancels the second and third terms in that equation, leaving 

This is simply a restatement of (14) in a more suitable coordinate system. It shows 
t'hat the change of R for small changes of position along the rotor edge is zero at 
location D where the logarithmic singularity is produced. That is, the line R from the 
observer a t  Q to the source point D is normal to the leading edge. If (7) alone is 
satisfied a t  some point D,  there will be a singular point a t  D in the r,-integral of (6). 
Equation (7)  always has a solution (at some time) for points on the blade at a radius 
greater than the minimum sonic radius. This does not guarantee a singular point in 
the pressure-time waveform; only if (19) is also satisfied will a singular point be 
produced upon integration of (6). Thus, for a given observer position a logarithmic 
singularity is produced by some point D on the edge if the Mach number of the 
segment is sonic relative to the fluid-fixed observer and the blade edge at D is normal 
to the line from the observer to D. 
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3.3. Discussion of the singularities 
The effect of sweep on the reduction of a propeller harmonic was previously 
attributed to phasing of the various spanwise segments (Hanson 1980). This is a 
satisfactory description, but the present analysis gives a more physical description 
in terms of the component of relative Mach number M, normal to the edge. With a 
little thought it becomes evident that if M, > 1 a t  any point D on the edge, then this 
point produces a logarithmic singularity a t  some point in the field. To see this, let the 
observer lie instantaneously in the plane normal to the edge a t  point D. In this plane 
the maximum Mach number of point D relative to the fluid fixed observer is M,. If 
the observer moves in this plane towards the x-axis, the relative Mach number of 
point D decreases until it reaches the value 1 ; here the observer sees a logarithmic 
singularity since the edge is still normal to the line from the observer to D ,  satisfying 
(7)  and (19). Thus, the faster moving outboard portion of the rotor tends to beam the 
sound up more towards the x-axis, just as the shock angle produced by an airfoil in 
rectilinear motion becomes smaller and the angle of propagation is in a more upward 
direction as the velocity increases. To eliminate logarithmic singularities from the 
entire flow field requires a subsonic edge, M ,  < 1, for the entire rotor. 

For illustration, consider the case M, = 0, a rotor with no forward velocity, and 
determine the minimum blade sweep that avoids logarithmic singularities. An 
observer in the plane x = 0 places the strongest restriction on the blade shape since 
only in this plane will the Mach number in the direction of the observer reach its 
maximum. A line from the observer to any point on the rotor leading edge is normal 
to the leading edge a t  some time during the rotor rotation. Denoting the local blade 
sweep by u(r,) as in figure 3 (where u is measured from the normal a t  D so that 
u = 8 - e ) ,  the Mach number in the direction of the observer a t  this time is M, cosu. 
The above discussion shows that there is no logarithmic singularity if and only if for 
all values of r,, 

where M, = Oro/c,. The minimum sweep that still avoids a logarithmic singularity 
follows by taking the equality in (20a). The local sweep is related to infinitesimal 
changes dr, and di3 by 

Equation ( 2 0 b )  with an equality in (20a) gives for a blade shape with minimum 

M,cosu < 1, (20a) 

dr, = (r,  do) cot u.  (20b) 

sweep 

Using linear analysis to calculate the pressure produced by this blade shape may give 
somewhat inaccurate results; every point on the edge of the blade is essentially 
transonic since the Mach-number component normal to the edge has the value one, 
and a transonic theory may be needed. 

The above argument for the case M, = x = 0 is easily generalized to the case 
M, + 0. Considering a particular rotor radius r,, if a plane is drawn normal to leading 
edge a t  this point an observer will find that in this plane the maximum value of the 
rotor Mach number M, relative to the fluid-fixed observer is 

where the sweep angle u is defined as the angle between two planes, both normal to 
the x = 0 plane, with one tangent to the blade leading edge a t  the point ro and the 
second passing through the x-axis and the point ro on the leading edge; (20b) is 
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consistent with this definition. There will be no logarithmic singularity if M ,  < 1, 
giving (M,/P) cos v < 1, where Pz = 1 -ME. The rest of the derivation follows as 
before with the result that in (20c)  M ,  becomes M,/P. 

Comparison with the two-dimensional case of a swept airfoil is very helpful. If an 
infinite-span airfoil moves rectilinearly a t  supersonic speed but is swept so that the 
velocity normal to the leading edge is subsonic, then, ignoring boundary-layer 
effects, one can translate parallel to the airfoil, eliminating the spanwise flow 
component and making the problem subsonic. One might calculate the sound from 
such an airfoil by integration over the span, just as is done here. For a fluid-fixed 
observer the integration produces ‘singular points ’ where the relative Mach number 
of that spanwise segment is sonic relative to the observer. However, since the far- 
field pressure perturbation of an airfoil moving rectilinearly a t  subsonic speed is zero, 
these local singular points have no particular significance. There will be significant 
phasing differences between the various spanwise segments giving noise cancellation, 
whereas if the problem were calculated in a coordinate system in which the airfoil 
moved normal to its leading-edge line, there would be no need for this phasing 
interpretation. 

This singular behaviour can be compared to a shock wave from the edge such as 
occurs for a two-dimensional airfoil in supersonic flow. This should be considered a 
qualitative analogy, however, since the pressure field calculated for linearized flow 
over a two-dimensional airfoil does not give an infinite pressure at the shock ; rather 
only a jump in pressure is predicted. The logarithmic singularity of the rotor case is 
a focusing of the Mach-wave pressure field not present in the two-dimensional case. 
Nevertheless, the criterion for a logarithmic singularity for the rotor case is the same 
criterion for an observer to lie on the shock produced by an airfoil in rectilinear 
motion. That is, the observer lies on the shock a t  that time when the airfoil a t  the 
retarded position is moving towards the observer a t  a relative Mach number of one. 
Also, the requirement that M ,  < 1 for all T,, to eliminate logarithmic singularities 
throughout the fluid is the same criterion for a swept airfoil in rectilinear motion to 
produce no shock. 

The predictions for the rotor problem near the logarithmic singularities must be 
regarded as inaccurate to some degree since an infinite pressure cannot actually exist. 
This is another reason for favouring the time-domain approach over the frequency- 
domain approach. Since the linearized solution must be in error near the logarithmic 
singularities, these points are easily excluded from comparisons with experiment 
when in the time domain. In  the frequency domain, however, the errors made near 
the logarithmic singularities are mixed throughout the spectrum, and the only way 
to remove them is to perform a Fourier inversion to the time domain. This may not 
be especially important in practice since a rotor should be designed to avoid the 
logarithmic singular points ; also the logarithmic singularities are integrable, giving 
only finite acoustic energy. Nonlinear propagation may also be easier to account for 
using the time-domain approach. The inaccuracy in the linearized solution for the 
prediction of the logarithmic singularities was noted by Hanson (1979) by comparison 
with data, although the singular behaviour a t  these points was not noted. 

A singular point entering or leaving the rotor a t  the tip also produces a significant 
effect worth consideration. The singular points change their radial position on the 
blade during the rotation of the rotor. Since their velocity along the edge is affected 
by the blade velocity, sweep and observer position, but not the presence of the tip, 
their velocity a t  the tip is generaly non-zero, and one might expect a significant effect 
as a singularity moves past the tip. In fact, this phenomenon leads to abrupt changes 
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in the slope of the pressure-time waveform. The further description of this effect is 
delayed until 36.3, after the figures showing the movement of the singular point 
along the edge are presented. 

4. Relation to the Taylor, Lamb, Hilton result 
The pressure wave produced by the logarithmic singularity can be related to the 

wave discussed by Hilton (1938) who presents an analytical description (attributed 
to G. I. Taylor and H. Lamb) of the shape of the wave propagating a t  the sound 
speed away from the rotor and rotating with the angular velocity i2 of the rotor. 
Hilton considers the singular wave produced in the rotor plane by a single source 
point rotating supersonically in a circle with zero forward velocity. This produces 
two branches of the wave, one that moves outward from the source and one that 
moves inward towards the hub until reaching the sonic circle ; here a cusp is produced 
and the wave again moves outward. A single source thus leads to two singular waves 
propagating to the far field. 

For the cases considered here there are two source regions, one on the leading edge 
and one on the trailing edge. Each leads to only one singular wave, as is evident from 
the pressure-time waveforms a t  the observer, to be shown later ; two logarithmic 
singularities are shown in figures 9 and 12, one arising from the leading edge and one 
from the trailing edge. For a straight blade, the source region is a t  the sonic circle (at 
the cusp described by Hilton) ; thus, the wave does not propagate inward from the 
source region and only a single wave is produced. For the swept-blade case, the 
region inboard of the source region is effectively moving subsonically owing to the 
sweep, and again only a single wave is produced. The present analysis shows that a 
single source is insufficient to define the wavefront ; rather, it  is necessary to know the 
distribution of sources in a region to understand the noise generation potential of 
that region. This is just a restatement of the fact that an airfoil moving at sonic speed 
towards the observer may or may not be an important noise source, depending on the 
sweep angle of the edge. This is acknowledged by Hilton, in effect, because of the 
obvious difficulty in determining which source, from all those on the airfoil surface, 
to use in determining the wavefronts that he measures. Hilton notes that the analysis 
of Taylor does not require the specification of a particular source, but that a t  the 
same time, the angular position a t  which to begin the wavefront is undetermined. 
This leads him to the comment ‘It is better to regard these spiral curves as the only 
wave pattern which can rotate about the hub without change of shape, and to leave 
the relative positions of the airscrew blade and wave pattern to be determined by 
experiment’. The present paper gives the means to locate these spiral curves in 
relation to the rotor, a t  least to the accuracy permitted by the assumption of 
linearized flow. 

It should be emphasized that the present derivation considers only the case of an 
airfoil with a sharp leading edge. Whereas Hilton places the source of the singular 
wave a t  the supersonically moving tip, for the present case the tip does not lead to 
such a singular wave ; for a sharp leading edge the tip will later be shown to produce 
an infinite slope in the pressure-time plot a t  the time that the tip moves towards the 
observer a t  a Mach number of one (at the time a singular point moves past the tip), 
not a pressure jump or an infinite pressure. For the case of an airfoil with a finite 
leading-edge radius, however, the possibility of such a source a t  the tip cannot be 
excluded. In fact, the analysis of Tam (1983) suggests that pressure jumps may be 
produced by the tips of rotors with a finite leading-edge radius. 
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0 A 

FIGURE 4. Path of the singular wave propagating away from the blade. 

The construction procedure for the curve of the singular wavefront helps clarify its 
generation when one notes that the wavefront is produced a t  that time when the edge 
is normal to the source-observer line and moves at sonic speed towards the observer. 
The construction procedure given by Lowson & Jupe (1974), which involves drawing 
a series of circular arcs with centres on the moving source point, is consistent with 
this generation process. For the straight-blade case with M ,  = 0 and the observer in 
the rotor plane, the present analysis shows that the source of the singular wave 
moves sonically. The curve in figure 4 is constructed by specifying the propagation 
distance of the wave, BD, to be equal to the length of arc AB through which the 
source has moved. Since the distribution of sources along the edge is normal to the 
source-observer line, the wavefront at its point of origin, B, is normal to this line. 
Because a wave propagates along its normal, this wave propagates to point D, 
defining the wavefront a t  D. 

In  figure 4 the wave at A is parallel to the leading edge, OA, of the straight blade. 
For the swept-blade case the wave is again parallel to the airfoil edge a t  the singular 
point on the blade, which is the origin of the wave. Just  as for the straight-blade case 
this follows from the fact that the logarithmic singularity is produced by that point 
on the blade that moves towards the observer a t  sonic speed while having the edge 
normal to the source-observer line. The wave produced moves a t  sonic speed along 
a line normal to the wave. Since its direction of propagation must be towards the 
observer if it  is to reach the observer, the wavefront is parallel to the edge at the 
point of generation. 

5. The general method of calculation 
A computer program for performing the integrations in (6) has been developed. 

This is a difficult programming task as is evident from the previously calculated 
results for this problem. For example, Farassat (1986) in his figure 3 compares results 
of a previous calculation with an improved calculation procedure. The improved 
procedure produces much better results, but the curves are still not perfectly smooth. 
Amiet (1977) points out the difficulties inherent in the time-domain calculation and 
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improves upon a previously calculated result of Hanson, but does not completely 
eliminate the errors. These errors can mask some of the behaviour to be discussed 
here, such as changes of slope that would be difficult to discover without an accurate 
prediction scheme. Without a reliable calculation, one is not certain whether the 
ragged prediction is due to numerical inaccuracies or inherent in the solution. 

An alternative approach is to analyse the problem in the frequency domain. This 
should give identical results to the time-domain approach, after a Fourier inversion, 
if enough frequency terms are calculated. However, a great many terms would be 
required to illustrate the slope discontinuities shown in the following figures. Certain 
of the calculated points given here have a spacing of 0.01" ; to get equivalent accuracy 
in the frequency domain would require of the order of 0.5 (360/0.01) harmonics. To 
some extent this accuracy is academic ; i.e. it may not be needed for noise prediction. 
However, it is very useful when attempting to understand the sound generation 
process. 

The computer program, consisting of approximately 600 lines of Fortran code, was 
developed and all calculations were performed on an Apple Macintosh Plus 
microcomputer. Calculations take on the order of twenty minutes per point for the 
pressure-time waveform on this computer, but this is highly dependent on the 
accuracy required, here specified as approximately fourth-digit ; the calculation time 
could be significantly decreased by relaxing the accuracy requirement. Double 
precision arithmetic was used for all calculations ; because of the many parts of the 
program where accuracy can be lost (finding zeros, integration of functions that tend 
to cancel to zero, etc.) this gives an extra margin of flexibility. 

The program simulates a 'flyover' with the observer fixed to the ambient fluid; the 
result for a propeller-fixed observer can be calculated by translating the observer 
with the propeller and calculating the pressure for the corresponding stationary 
observer a t  each instant of time, since the motion of the observer does not affect the 
instantaneous pressure a t  the observer position. 

The calculation begins with determination of the sonic line, given by (7),  
representing the locus of rotor points that are sonic with respect to the observer. The 
case of an observer fixed to the ambient fluid is simpler than the rotor-fixed-observer 
case since the helical path is fixed with respect to the fluid-fixed observer ; this allows 
a single calculation (valid for all time) of the sonic line. A given point on the edge of 
the rotor is sonic with respect to the observer a t  the time when the point lies on this 
line. 

For the case of zero forward velocity and an observer in the far field, the sonic line, 
af/ay = 0, is a straight line. To show this, set V = 0 in (4) and take the y-derivative, 
giving R(af/ay) = (Qyro/U)  sin (yQ/U). If 0 denotes the angular position around the 
rotor, then 0 = yQ/U. Combining these two relations with (7), gives, for the equation 
of the sonic line, 

ro sin (0) = constant, 

which is the equation of a straight line. The far-field assumption is needed to make 
small any relative changes in the factor R, contained in the constant on the right- 
hand side, The sonic-point locus is plotted as a dashed line in the figures of the 
retarded blade shapes, and is nearly a straight line since V = 0 is assumed for these 
results and the observer distance is significantly larger than the rotor radius. 

To perform the r,-integration in (6), the retarded position of the leading and 
trailing edges for the chosen observer position and time of interest must be found. 
This involves finding zeros of the function f = < c ) .  Whereas the sonic line need only 
be calculated once for a fluid-fixed observer, the retarded blade shapes must be 

(22) 



548 

2 

0 

-2  

f 
S 

-4  

- 6  

- 8  

R. K .  Amiet 

I 1 I I 

Y I S  

FIQURE 5. Plot of the function f versus 0 showing three zeros at y /s  = 13.33, 14.00, 14.83. The 
parameters chosen for this particular calculation are ar , /c ,  = 1.1 ,  ro / s  = 1 ,  y/s = 10, z = M ,  = 0, 
( Q t / 2 ~ )  x 360 = - 177.4. 

calculated for each new time point calculated. A sample plot of the function f, 
representing approximately two rotor rotations, is given in figure 5 .  The values listed 
for the parameters are the same values used later for the calculated sound ; this is the 
case V = 0 for which f is a linear plus a cosine function of y.  Given the retarded blade 
position, the ?-,-integral is calculated. This is conceptually simple, but it is the 
procedure most likely to give inaccuracies because of the singular points, points that 
are nearly singular and multiple singular points that are encountered in (6). 

6. Calculated results 
6.1. The retarded blade shapes 

Plots of the retarded body shape (the retarded positions of each source point on the 
body for the time of interest) give insight into the sound production process. This 
type of plot was also given by Hanson (1976); it is a natural type of plot to make 
since locating the points satisfying f = ( c )  is a necessary intermediate step in 
evaluating (6). To make plotting easier, the forward velocity of the rotor is assumed 
zero so that the retarded body shape lies in a plane. This case was also chosen to 
match that of Hanson (1976), allowing a direct comparison of results. 

Figure 6 shows a sequence of these retarded body shapes for the case of an airfoil 
with straight leading and trailing edges and a constant chord. The observer lies in the 
same plane as the counterclockwise turning rotor. Only the advancing half of the 
rotor disk is shown. The sonic line, plotted in these figures as a dashed line, points 
towards the observer ; it would be exactly vertical if the observer were at  infinity on 
the axis, but here the observer is only 5 rotor diameters away. The retarded airfoil 
shape is significantly distorted from the actual blade shape, and in fact can become 
divided into multiple regions. The successive figures are for increments of the 
rotation angle 0 differing by 1" (equal time increments), except for figure 6 ( c )  which 
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FIGURE 7. Figure 6(c )  replotted as r0 ws y .  The dashed line is the sonic line. 

was added to show the behaviour very near the logarithmic singularity in the 
pressure-time waveform, which occurs a t  the merging of the two blade areas. The 
extremum points of each of these retarded airfoil regions (the points of local 
maximum or minimum r,  when plotted versus y)  are points a t  which af/ay = 0. 
(f = ( c )  defines the edge of the retarded airfoil shape so that df = 0 as one moves 
along the edge. But df = (af/ay) dy+ (af/ar,) dr, and since dr, = 0 and dy + 0 a t  the 
extremum, it follows that af/ay = 0 here.) Thus, the sonic line, = 0, passes 
through each of these extrema. For a straight airfoil it appears that the extrema are 
always minima, with a t  most a single extremum on each edge. For a swept blade one 
can encounter more than one singular point on the leading or trailing edge; i.e. the 
retarded edge may have a region with both local minima and maxima, as will be 
seen. 

Figure 6 (c) is replotted with y as the abscissa in figure 7, showing more clearly the 
extremum point that exists a t  the bottom of the smaller of the two retarded blade 
regions, here referred to as region 2, with the major blade region being labelled region 
1. The sonic line, again shown as a dashed line, passes through the minimum of region 
2. When the exact time of the logarithmic singularity in the pressure-time waveform 
is reached, region 2 in figure 7 meets region 1 a t  the minimum of the sonic line. (For 
a swept blade, the two regions generally do not meet a t  the minimum of the sonic 
line.) Note that the scale has been magnified to show the details of the region more 
clearly, and that region 1 comes very close to the sonic line without actually 
touching ; the time is just prior to the occurrence of the logarithmic singularity. 

6.2. Singular and nearly singular points 
Points satisfying aj/ay = 0 are especially important ; in addition to being extrema in 
a plot of r ,  us. y ,  they are singular points in the integrand of (6) since the 
denominators of the last two terms in this equation contain the factor af/ay. Figure 
8(a)  shows the contribution to the integrand, around the minimum point, rsing, 
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FIGURE 8. Values of the integrand for the r,-integral in equation (6). The parameters Qr,/c,, 
y/s,x, M ,  take the same values as in figure 5, and 0 = (Qt/2rr) x 360 = - 177.15, as for figure 6(c) .  
The dashed line is the radius ro /s  = 0.912 of the singular point. e, and t, are the leading- and 
trailing-edge contributions from the larger of the two retarded blade areas in figure 6(c). 8, and 
e, are the edge contributions from the smaller area. i is the y-integral in equation (6) from both 
blade areas. (b) Shows the total for all the contributions of (a). 

shown in figure 7 ,  for each of the various terms in (6). A 10% thickness biconvex 
parabolic airfoil, the same as used by Hanson (1976), is assumed with h(y)  = 
0.4cy( 1 - y/c) .  The curve labelled i shows the y-integral term. The remaining four 
curves in the figure represent the second and third terms in (6) ; two of these, e, and 
t,, represent the leading- and trailing-edge contributions from region 1 and the 
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remaining two curves, 8, and d,, represent the singular contributions from region 2 .  
Beginning a t  ro > rsing, and approaching rsing, the integrand approaches infinity, 
generally as Ar;; but as Aril a t  the time of the logarithmic singularity, where 
Ar0 = Ir, - rsingl. There are two contributions of this type since a line drawn a t  constant 
ro in figure 7 cuts the perimeter of region 2 a t  two points, both satisfying f = 0 
representing the leading edge. When ro decreases to a value less than rsing, the 
contribution to the integrand from region 2 immediately drops to zero. This singular 
behaviour must be properly treated when performing a numerical integration over 
YO. 

Another difficulty is produced by what will here be called ‘near singularities’. This 
describes very small regions where the integrand becomes large, but not infinite. 
Whereas a singular point can readily be located by noting where af/ay changes sign, 
the near singularities are not so easily found. A near singularity can arise whenever 
the retarded source region passes near, but does not intersect, the sonic line given by 
i f /ay = 0. Such a case is shown in figures 6(c) and 7 where the border of region 1 
bulges outward towards the sonic line. On moving along the border of region 1 the 
factor i3f/ay becomes very small, but never changes sign. The resulting near 
singularity is shown in figure 8 (a)  ; an attempt to locate these regions by searching 
for rapid changes in the magnitude of the integrand may fail if the step size is too 
large. A closely related problem occurs if two singularities are more closely spaced 
than the integration step size. Then a routine looking for a change in sign of i3f/i3y 
can miss both points if a calculation point does not fall between the singular points. 
Such closely spaced singular points will be seen in the swept-blade cases to follow. 

The time corresponding to  the case in figure 7 (and for figure 11 (c) to  be discussed 
later) was chosen to lie very near to the logarithmic singularity where region 1 
approaches very near to the sonic line. As previously noted, a t  the exact time of the 
logarithmic singularity, the coefficient of the Aro-term in (11) is zero; in this case, 
retaining additional terms in ( l l ) ,  the relation between Ay and Aro near the 

a2R 
art A ~ A T ~ + - ( A ~ , ) ~ + . . .  = 0. 

a2R a2R singularity is 
- (W2 + 2 
aY 

(23) 

This is quadratic and has two solutions. Thus, Ay and Ar, are related in a linear 
manner, but with two possible slopes emanating from the singular point. This 
explains the appearance of the corners in the retarded blade shape in figures 6 (c) and 
11 (c). Instead of skirting past the singular point a t  a reasonable distance, the 
retarded edge line moves directly towards the singularity then directly away from it. 
The singularity is never quite reached (unless the time equals precisely the time of 
occurrence of the logarithmic singularity), but may be approached very closely, 
forcing the denominator of the second or third terms of (6) very close to zero and 
producing the near singularity. Thus, these nearly singular points are found near the 
time and radius of a logarithmic singularity. 

Figure 8 ( b )  shows the result from combining the separate terms of figure 8 (a) .  The 
combined result drops to zero much more quickly than the individual terms as one 
moves away from the singular point, showing some cancellation between the various 
terms. Also, it is noted that even if the two singular contributions have been properly 
computed, a very fine integration scheme is needed to properly account for the very 
peaked but non-singular contribution. 

Performing the r,-integration gives the pressure a t  the observer due to all source 
points. If this is repeated for many time values, a plot of the sound pressure ws. time 
can be made. Such a plot for the same straight-blade case is shown in figure 9. It 
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FIGURE 9. Pressure-time waveform for the straight-blade case in figure 6. 8,, . . . , 8, and Sl,2 are 
given by O1 = - 178.78, O2 = - 175.50, 8, = - 174.19, O4 = - 170.92, S,  = - 177.14, S, = - 172.10. 

should be emphasized that no smoothing was done in the creation of this or any of 
the plots in this paper. All plots were made by a computer-controlled plotter 
connecting calculated points by straight line segments. This, of course, requires a 
great many calculated points to get a smooth curve, but it does illustrate the 
accuracy of the program and gives assurance that there is no prejudicial input on the 
part of the artist. The abscissa 6' represents the angular position of the rotor a t  the 
corresponding time. Thus, the abscissa can also be considered a time axis since the 
angle is linearly related to the time. The angular range 6 of the rotor is negative as 
shown, but would be positive if the next rotor rotation were used for the calculations. 
The spacing of the calculated points was 0.1' or 0.05', except near the logarithmic 
singularities and near the regions of abrupt slope change, for which the spacing was 
decreased to 0.01'. 

The most prominent feature of this plot is the appearance of two singular points. 
These are the logarithmic singularities ; they appear where the factor multiplying 
Ar,, in (1  1) (repeated in (14)) becomes zero. Because linear theory gives a singularity 
at these points, one cannot calculate a magnitude for the peak. The value calculated 
for the trough, however, can be compared with the previous calculation of Hanson 
(1976) for this case. Hanson gives p/poci  = -0.013, while the present, calculation 
gives -0.012970 for the minimum value attained. The present result thus agrees 
with that of Hanson, but Hanson's result does not resolve the fine detail shown in 
figure 9;  the relatively flat botom of the curve is not at  all evident. A similar, but not 
identical case, calculated in the frequency domain, is given in figure 5 of Hawkings 
& Lowson (1974), but this also fails to show the fine detail. 

6.3. Points of abrupt change of stope 
In  addition to the logarithmic singularities in the plot of pressure versus time, there 
are points, 6,, 6,, 6,, 6,, where the plot abruptly changes slope. These points 
correspond to the appearance or disappearance of the second retarded blade source 
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region. As noted from figures 6 and 11, this new region originates a t  the blade tip and 
grows inward. (The sequence of events is slightly different for the 50" sweep case.) 
Since there is always a singular point a t  the minimum r,-value of region 2 shown in 
figure 7, when region 2 first arises it does so with the appearance of a singularity a t  
the tip. This occurs when the leading edge becomes sonic a t  the tip with respect to 
the fluid-fixed observer ; the appearance of the source region is shown at  the upper 
end of the sonic line near the 30" angle of the rotor disk a t  a time between the values 
of figure 6 ( a )  and ( b ) .  The region then expands as the singularity moves inward along 
the edge. O2 corresponds to the disappearance of the singular point from the rotor 
leading-edge tip around the angle of - 25", as shown in figure 6 ( e )  in which one can 
just see region 2 a t  the lower end of the dashed sonic line. O3 and 0, relate to the 
trailing edge, around the times corresponding to figures 6(g), which shows the 
appearance of a singular point, and S( j )  which shows its disappearance. These 
O,-values can readily be calculated in the following manner: (i) calculate the two 
y-values of the sonic line a t  the tip; (ii) introduce these into (4) to find the 
corresponding R values; (iii) introduce these y- and R-values into (8) from which four 
values of time t can be determined; 8 then follows from 8 = Qt. 

The slope of the pressure-time waveform is infinite at these &values. Since the 
velocity ws of the singular point along the edge is generally non-zero when the 
singularity enters the tip, the distance d of the singularity from the tip is d = v, At for 
small At = t - t o ,  where to is the time of appearance of a singularity a t  the tip. 
Performing the r,-integral in (6) over the r;: singularity gives, for the contribution 
of the newly formed region, 

(24) 1-15 10 = 2di = ( ~ , A t ) i .  

The time derivative, or slope, thus varies as (At)-;  near each 8,, . . . ,0, value ; this is 
infinite for At = 0. 

The relative importance that the various portions of the pressure-time waveform 
have in generating the overall acoustic intensity a t  the observer is found by squaring 
the pressure and integrating with respect to time with a variable upper limit. Figure 
10, with the upper limit as abscissa, shows that singular regions are important, but 
do not dominate over the remainder of the waveform. The large negative portion of 
the waveform is somewhat more important for this particular case. 

6.4. Effect of sweep 
The result of sweeping the blade a moderate amount, but not enough to eliminate the 
logarithmic singularities is shown in figures 1 1  and 12. The rotor blade is identical to 
the straight blade, except for the tip region, which is swept back at approximately 
a 20" angle, keeping constant the chord measured along y .  The planforms for the 
three cases of straight blade, 20" and 50" sweep are shown in figure 13fh-j);  these 
plots are created from the same program and blade inputs used for calculating the 
retarded blade shapes and pressure, but now assuming zero Mach number. Defining 
r ,  as the value of ro a t  the break point A in figure 3 where the airfoil begins to sweep, 
the blade definition for ro > r l  is 

yo = X ( ~ o - - r , )  = roc, (25a) 

where x = tan (20") for figures 1 1  and 12 and yo is the arc DE. This definition was 
simpler than a constant angle of sweep since the definition was made in the (To,  y)-  
coordinate system, but as noted from figure 13(i) and (j), the deviation from a 
constant sweep angle is small. The value of c is not needed in the calculations, but 
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FIGURE 10. Time integral of the acoustic intensity a t  the observer as a function of time (angle). 

can be used in the following equation to find the local slope 6 of the blade. From the - -  - 
geometry of figure 3, 

tan(a-s)+e = x. (25b) 

For values of 6 not too large, tan 6 is nearly constant and close to the value assumed 
for x .  

The retarded blade shapes in figure 11 are topologically quite similar to those in 
figure 6. The time between plots is now not fixed a t  1" increments to allow selection 
of the most interesting cases. Figure 11 ( c )  shows the retarded blade shape at  a time 
very near to but just before the appearance of the logarithmic singularity. The two 
separate blade regions have not quite merged yet;  enlarging the region near the 
merger point would show the two retarded blade areas to be in the shape of two 
corners that have not quite met. The points 6,, . . . ,6, are determined by the time a t  
which the tip of the leading or trailing edge intersects the sonic line ; since the sonic 
line is the same for both cases, as is the airfoil chord measured along the y-coordinate, 
the spacing between these points is the same in figure 12 as in figure 9. The 
logarithmic singularities, 8, and S,, have shifted left relative to el, . . . , e4 when 
compared to figure 9. The minimum in the curve is now plpci = -0.011 35, not 
radically different from the value for the straight-blade case. One notes that the 
relatively flat portion of the curve between 6, and e3 in figure 9 has now begun to tilt 
upward to the right. 

One additional point worth noting is that several singular points in the ro-integral 
can now exist on the leading or trailing edge. Thus, three singular points in the 
ro-integral are evident on the leading edge of figure 11 (b). The two singular points 
produced at the two corners noted above lie very close to one another, and provision 
must be made in the computer program for resolution of the points. Two closely 
spaced points are also found for a very short time slightly prior to that shown in 
figure 11 (b)  when the rotor retarded planform just crosses the sonic line. 

Figures 13 and 14 show similar calculations for the 50" sweep case (x = tan (50")). 
This calculation is more subject to error than the 20" case, because of the significant 



556 R. K.  Amiet 



Thickness noise of a propeller and its relation to blade sweep 557 

-0.02 I I t I I I I I I t I 
- 176 - 174 - 172 - 170 - 168 - 166 

8 

FIGURE 12. Pressuretime waveform corresponding to figure 11. el, . . . ,8, and are given by 
el = - 174.61, e, = - 171.33, e, = - 170.02, er = - 166.75, s, = - 174.35, s, = - 169.48. 

cancellation produced by the sweep in the radial integration. The logarithmic 
singularities, S ,  and S,, are no longer present ; their absence means that blade areas 
cannot split off or merge inboard of the tip. Thus, as time proceeds from figure 13 ( e )  
to ( g ) ,  the r,-singularity moves upward towards the observer along the sonic line. 
The second blade area does not split off as in figures S ( i )  and 1 1  (h) .  (which would 
produce a logarithmic singularity) ; rather, the ro singularity first reaches the rotor 
tip, defining the e3 point and beginning a rapid decrease in the far-field pressure. A 
dramatic reduction in the sound results when compared to the straight-blade and 20" 
sweep cases. 

The spacing of the points 8,, . . . , 8, is the same as for the straight-blade and the 20" 
sweep cases. The effects produced by the points O,, . . . , 8, has changed, however. 
Thus, for the straight-blade case 8, is the angle a t  which the second area along with 
a singular point (representing a minimum in the ro vs. y curve as in figure 7) are 
created just prior to figure 6 ( b ) ,  beginning an increase in the pressure waveform. For 
the 50" sweep case, 8, is the angle a t  which a singular point (representing a maximum 
in the ro ws. y curve) leaves the blade just prior to figure 13 (c), beginning a decrease 
in the pressure. Whereas the singularity for the straight-blade case gives a 
contribution to  the integral for ro > rsing (where rsing denotes the radius at the 
singular point), the singular point for the 50" sweep case gives a contribution to the 
integral for ro < rsing. O2 and 8, are produced by similar circumstances for the straight 
and 50" sweep cases, but e3 marks a singular point entering the straight blade, just 
prior to figure 6 (g), beginning an increase in the pressure waveform, while O3 marks 
the disappearance of a singular point from the 50" swept blade, just after figure 13 ( e ) ,  
beginning a decrease in the pressure waveform. 

One might look to the possibility of varying the timing of the @,-values as a means 
to control the sound. For any given span and angular velocity the spacing between 
the pair 8,,0, is fixed for any given observer position, as is that between the pair 
03, 8,. The first of these pairs is produced by the leading edge a t  the tip crossing first 
one end then the other end of the sonic line ; the second pair is produced in a similar 
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-o'oo2.." -0.004 
- 170 -160 

e 
FIQURE 14. Pressuretime waveform corresponding to figure 13. el, . . . , O4 are given by 

e, = - 165.12, e, = - 161.85, e, = - 160.54, e, = - 157.26. 

manner by the trailing edge. Changing the chord does not change the spacing 
between these pairs. However, the spacing between 8, and 8, (or between 8, and 
8,) is dependent on the value of the chord at the rotor tip, since the e1,8, spacing 
is determined by the time between when the leading edge crosses one end of the sonic 
line and when the trailing edge crosses the same point. The time to between 8, and 
8, is to = c / U ;  thus, for the present V = 0 case the angular spacing between these 
points is Qt, = c/s = 4.58" for c /s  = 0.08, agreeing with figures 9, 12 and 14. The 
capability of varying the spacing between 8, and 8, by varying the chord a t  the tip 
might be worth further investigation as a means of noise control. The 8, values do 
not give the complete explanation of the waveform, however. Thus, in figure 14 there 
is a sharp increase in the pressure waveform between 8, and 8,, even though there are 
no singular points entering or leaving the tip of the blade. 

7. Conclusion 
Success in the reduction of the thickness noise produced by a propeller is 

dependent on understanding the mechanism of sound production. The preceding 
analysis and comparison with numerical calculations gives a better description of the 
sound generation process than previously available. The numerical techniques used 
completely eliminate the sometimes erratic behaviour of previous calculations and 
show that the result for linearized flow should be a perfectly smooth pressuretime 
waveform, except a t  the logarithmic singular points, and a t  four other points a t  
which the slope changes abruptly for an airfoil with a sharp leading edge. These 
abrupt slope changes are produced by a singular point entering or leaving the rotor 
at the tip. The results show the feasibility of performing calculations in the time 
domain, which has sometimes been bypassed in favour of frequency-domain 
calculations in order to avoid certain computational difficulties, even though the 
time-domain calculation may be more instructive. Although the initial programming 
task is difficult for the time-domain calculation, it need only be performed once. 

Examples have been given for three straight- and swept-blade cases, consisting of 
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nearly straight line segments for the leading and trailing edges. It should be 
emphasized that the general case of a blade with a smoothly increasing sweep near 
the tip is a more realistic one and may produce a waveform that looks somewhat 
different. It should be possible to significantly influence the waveform by changing 
the sweep, chord and thickness distribution. Nevertheless, all waveforms will exhibit 
the four points el, .  , . ,8, as distinct features since they are produced whenever either 
the leading or trailing edge crosses the sonic line. An exception to this would appear 
to be the case where the chord has tapered to zero a t  the tip ; the leading and trailing 
edge 0-values are then superimposed, 8, on 03, and 8, on 8,. 

Logarithmic singularities may also be present, although a proper blade design 
should eliminate them. They may be prevented for a given observer by avoiding 
areas on the blade that can move sonically relative to an observer while simul- 
taneously having the edge normal to the source-observer line. To eliminate the 
logarithmic singularities throughout the flow field requires that the component of the 
rotor-blade Mach number normal to the edge be everywhere subsonic. Hopefully, 
understanding these logarithmic singularities together with an understanding of the 
role played by the four 0,-values, as well as the ability to adjust the spacing between 
them to some extent, will prove useful in noise reduction. 

This paper is dedicated to Professor William R. Sears on the occasion of his 75th 
birthday. 

REFERENCES 

AMIET, R. K. 1977 Thickness noise of a propeller or helicopter rotor. United Technologies Research 

CURL, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. Roy. Soc. Lond. 

FARASSAT, F. 1983 The prediction of the noise of supersonic propellers in the time domain - new 
theoretical results. AIAA Paper 83-0743. 

FARASSAT, F. 1984 The unified acoustic and aerodynamic prediction theory of advanced 
propellers in the time domain. AIAA Paper 84-2303, A I A A I N A S A  9th Aeroacousties 
Conference, October 15-17, 1984, Williamsburg, Virginia, USA. 

FARASSAT, F. 1986 Prediction of advanced propeller noise in the time domain. AZAA J .  24, 

FARASSAT, F. & SUCCI, GI. P. 1980 A review of propeller discrete noise prediction technology with 
emphasis on two current methods for time domain calculations. J .  A’ound Vib. 71, 39M19.  

HANSON, D. B. 1976 Near field noise of high tip speed propellers in forward flight. AZAA Paper 
76-505, A I A A  3rd Aeroacoustics Conference, July  20-23, 1976, Palo Alto, Californiu, USA.  

HANSON, D. B. 1979 The aeroacoustics of advanced turbopropellers. In Mechanics of Sound 
Generation in Flows (ed. E.-A. Muller), IUTAM/ICA/AIAA-Symposium, Gottingen, pp. 

HANSON, D. B. 1980 The influence of propeller design parameters on far fieid harmonic noise in 
forward flight. AZAA J .  18, 1313-1319. 

HAWKINGS, D. L. & LOWSON, M. V. 1974 Theory of open supersonic rotor noise. J .  Sound Vib. 36, 
1-20. 

HILTON, W. F. 1938 The photography of airscrew sound waves. Proc. R. SOC. Lond. A169, 
174-190. 

LOWSON, M. V. & JUPE, R.  J.  1974 Wave forms for a supersonic rotor. J .  Sound Vib. 37, 

SCHMITZ, F. H. & Yu, H. 1986 Helicopter impulsive noise: theoretical and experimental status. 

TAM, C. K. W. 1983 On linear acoustic solutions of high speed helicopter impulsive noise 

Center Rep. R77-111204. 

A231, 505-514. 

578-584. 

282-293. 

475-489. 

J .  Sound Vib. 109, 361-422. 

problems. J .  Sound Vib. 89, 119-134. 


